
NEW YORK UNIVERSITY

COURANT INSTITUTE - LIBkARY

IMM-NYU 335

JANUARY, 1965

NEW YORK UNIVERSITY
COURANT INSTITUTE OF
MATHEMATICAL SCIENCES

FREDHOLM OPERATORS AND THE

ESSENTIAL SPECTRUM

MARTIN SCHECHTER

PREPARED UNDER

CONTRACT NO. DA31-124-AR0- D-204

WITH THE

U. S. ARMY RESEARCH OFFICE





TI^™I-NYU 355

Courant Institute of Mathematical Sciences

Nev; York Un5.verslty

PREDHOLM OPERATORS AND THE

ESSENTIAL SPECTRUI4

Contract No. DA31-12^-AR0".D-204

January 1955

Martin Schechter

Department of Army Project No. 20011501B70^

"Request for additional copies by Agencies of the Department
of Defense, their contractors, and other Government agencies
should be directed to:

Defense Documentation Center
Cameron Station
Alexandria, Virginia 2231H

Department of Defense contractors must have established for
DDC services or have their "need-to-know" certified by the
cognizant military agencies of their project or contract."

Reproduction in I'jhole or in part is permitted for any purpose
of the United States Government.



tii^- :•':
'7

C. T



Abstract

Fredholm operators are defined and their basic proper-

ties are proved. The essential spectruiii of an arbitrary

closed operator is considered and its invariance under several

kinds of perturbation is proved.

1. Introduction

We first give a complete treat;;ient of Fredholm operators.

Most of the results are found in the literature (e.g., [4, 8]),

but we have been able to substantially simplify proofs in sev-

eral instances. The deepest theorem we raake use of is the

closed graph theorem. We are able to avoid completely the

concept of the opening betvreen two subspaces.

Next we give a proof of a classical theorem of Weyl [ 13]

on the invariance of the essential spectruin under compact

perturbations and give two definitions for general closed

operators in a Banach space, one of them due to Wolf [ 1^]

.

We then consider more general types of perturbations. Further

results m.ay be found in [ 10] .

Remarks on specific results and }.)ethods are given at

the end

.

2. FredhoLm Operators

A linear operator A from a Banach space X to a Bane^ch

space Y v;ill be called a Fredholm operator if





1. A is closed

2. the domain D(A) of A is dense in X

3. a(A), the dii^iension of the null space N(A) of A,

is finite

4. R(A), the range of A, is closed in Y

5. ^(A), the codinension of R(A) in Y, is finite

The index of a Fredholm operator A is defined as

i(A) = a(A) -e(A) .

VJe nox^r vaake several observations. The set of Fredholin

operators from X to Y will be denoted by Y(X, Y).

01. If we decompose X into

(1) X = N(A) (i) X' ,

where X is a closed subspace of X, then

(2) llxjl < const. llAxIl

holds for all xfeD(A) ox'. This merely expresses the fact

that A restricted to D(A) nx' has as inverse defined every-

where on R(A), which is a Banach space. Hence this closed

inverse is bounded. ^

02. If A is closed, a{A) < « and (2) holds, then R(A)

is closed. For if A:<: —> y, x^'^ D(A) nX', then x^ —> x t X'

.

Thus x<-. D(A) and Ax = y.

05. If A€l'(X, Y), there is a bounded operator A* from

Y to D(A) X' such that





(3) A'A =1 on D(A) nx'

(4) AA' = I on R(A) ,

while A' vanishes on any prescribed comple.aent of R(A) in Y.

(Here I denotes the identity operator.)

Proof. Obvious.

04. The operator A' also satisfies

(5) A'a = I +F^ on D(A)

( 6

)

AA ' = I + F^ on Y

where the operators F. are bounded and have finite dimensional

ranges.
'

In fact A A -I vanishes on D(A) .'^x' and hence maps

D(A) into the image of N(A). A siiailar statement holds for

AA' -I.

05. If A is closed, D(A) dense and there are bounded

operators A. from Y to X and compact operators K, on X, Kp on Y

such that

(7) A^A = I + K on D(A)

(0) AAg = I + Kp on Y ,

then AcT{X,Y).

Proof. Q

(F. Riesz). We must show that R(A) is closed. Suppose

Proof. a(A) <_ a( I + K^) < 00 and e(A) <_ p(I + K^) < «



^0



[x^>'CD(A) oX', 11x^^11 = 1 and Ax^ —> 0. Since A^ is bounded,

(I + K, )x —^ 0. Since (x > is bounded, there is a subse-

quence (also denoted by ^x > ) for which K^x. converges to

sor.ie element z. Thus x —> -z. Since A is closed zeD(A)

and Az = 0, i.e., zfcN(A). Since x' is closed, z '^x' and

hence z = 0. But ||zi| = lim ^x^\\ = 1. This shows that (2)

holds. Thus R(A) is closed by 02.

We shall also need the following important lemma.

Leimia 1. If At-^(X,Y) and B^ 1'(Z,X), then AB £^r(Z,Y)

and

(9) i(AB) = i(A) + i(B) .

7

Proof. Clearly, D(AB) is dense in Z(01). Set

X = R(B) r. K(A)
o

R(B) = X ffi' X^

N(A) = X^^ Xp

X = R(B) (? Xg e X^





Then X , Xp, X^ are finite dimensional and X, is closed. Since

D(A) is dense in X, vie can take X^ to be contained in D(A).

Set dj_ = dij-a X^. Then

a{AB) = a(B) + d

P(AB) = P(A) + d^

d^ + dp = a(A)
6,

dg + cl^ = P'ip

These shovj that a(AB) and p(AB) are finite and (9) holds. We

must also show that R(AB) is closed. Now R{AB) is the range

of A on D(A) X^ . If Ax„ —^ f for < x„; c D{A) iX^, we have

by (2)

iix - X !| < const. 11a.(x -X )
'' m n'' — "^ m n

and since X, is closed, x —* x € X, . Since A is closed,
1 n X

xCD(A) and Ax = f. Thus R(AB) is closed.

It remains to show that AB is closed. Suppose

^z„^c.D(AE), z —^ z, AEz^ —-^ y. Write

Ez = x(°) +x^'^ ,n n n ^

where x^°^c K(A) and x^''^ >- x'. Then by (2) xj^"^ —^ x^"^^^- X',

If llx 11 ^ const., there is a subsequence (also denoted by

^x ^) for v/hich x^°^ —> x^ °^ e ri( a) . Thus Bz —> x^ °^ + x^
'^

and since B is closed zc^D(E) and Ez = x + x . Since A
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is closed x^°^ + x^-'^tD(A) and A(x^°^ + x^-'"^) = y. Thus

z nDiAB) and ABz = y. We nov; show that [x^ °
"| Is bounded.

For if Cn = \kl°^\\
--^ », set u^ = ^~-^x^°^ Then !|u^|| = 1

and hence there is a subseouence (also denoted by ^u„0
<. n -I

such that u —> u r. N(A). Moreover

/ -1 \
-"•

Hence B^ f z ) —> u. Sines Cv^'z —> and B is closed,

u = 0. This is impossible since |jujl = lim Hu j]
= 1. This

completes the proof.

Theorem 1. If A '-^ ^(X, Y) and K is a compact operator

from X to Y then (A+K) €?(X,Y) and i{A+K) = i(A).

Proof, By 0^1- there is a bounded operator A' such that

(5) and (5) hold. Now

a' (A + K) = I+P-j_+A'K on D(A)

(10) (A+K)A' = I +F2 +KA' on Y .

Since A' is bounded, the operators A K and KA' are compact.

We now apply 05 to obtain that (A + X) <J- Y(X, Y)

.

Nov.' a' is a bounded operator from Y to D(A). If we

equip D(A) vrith the graph norm of A, it becomes a Banach

space X and A becomes a Fredholm operator from Y to X.

Also AC^^(X,Y) with a(A) and p(A) the sahie. Hence by (j)





(11) i(A) + i(A') = i(I+F^) = (Riesz)

But by ( 10)

i(A+K) + i(A') = id-rFg +1^') = .

Hence i{A+K) = i(A) and the proof is complete.

Theorem 2. For A^'^J{X,Y) there Is an e > such that

for any bounded operator T from X to Y with IIt|| < e one has

(A + T)P. U'(X,Y), i(A+T) = i(A) and a(A+T) < a(A).

I

Proof. Bj'- Ok there is a bounded operator A satisfying

(5) and (6). Then

a'(A + T) = I +F^ +A'T

(12) (A+T)A' = I+Fg+TA' .

Take e = I1a' 11""^. Then |Ia't1| < 1 and ITA'II < 1. Thus the

operatorsi +A'T a.nd I+TA' are invertible and

(1+ A't)""A'(A + T) = I +(I + a't)"-^Fj_

(A-I-T)A'(I +TA' )"" = I +Fp(I +TA' )""'"

Thus by 05^ (A +T) <i T. By (12) and Theorem 1

i(A+T)+i(A') = id+Fg+TA') = i(I+TA') =



, - {
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Combining this vilth (11) we see that i(A+T) = i(A). It

reriiains to prove c(A + T) <_ a(A). By 03, A'(A + T) = I + A'T

on D(A) oX' and hence is one-to-one on this manifold. More-

over N(A+T) nx = -^O}. For if y is in this set, it is in

D(A)oX' and (A+T)y = 0. Thus (I+A'T)y = showing that

y = 0. Since

N{A+T) (J X'^X = N(A) (^ X'
,

V7e see that dim N(A +T) <_ dim K(A) and the proof is complete.

In the sequel we shall make continual use of the follov;-

ing lemma.

Lemma 2. Let !>. be a Banach space dense in X and let

A be a linear operator from X to Y with D(A) = X. If

A-^(X,Y), then A€ Y(X,Y).

Proof. Let E be the linear operator from X to X with

D(E) = D(A) and Ex = x for xeD(E). One checks easily that

E £^(X,X). Thus AE t^?(X,Y) by Lemma 1. But A = AE and the

conclusion follows.

An operator B from X to Y is called A-compact if

D(B)'2D(A) and for every sequence (x^ !£iD(A) such that

11x^11 + liAx^ll < const.

the seouence --Bx ^) has a convergent subsequence.

Theorem 5. If Ae5;f(x,Y) and B is A-compact, then

(A+B)€T(X,Y) and i(A +B) = i(A).



(A)

-r.'^ X nr

nt '
'

' Y o&



Proof. If we equip D(A) vjith the graph norm

||x|! + 1|Ax||, it tiecoines a Ba.nach space X (since A is closed).

If we now consider A as an operator from X to Y, vje have

A£^(X, Y). Moreover B is compact from X to Y. Hence by

Theorem 1, (A + B) e Y(X, Y) with i(A + B) = i(A). We now

apply Lenmia 2 to obtain (A+B) c^^(x,Y).

Theorem 4. For each A£?(X, Y) there is an e >

such that

llBxll < edlxll + llAxIl) , x..D(A) ,

holding for any operator E from X t£ Y with D(B)^D(A)

ir.iplies that ( A + B) <£ ^(X, Y), i(A-!-B) = i(A), and

g(A + B) ^ a(A).

Proof. Similar to that of Theorem J.

For an arbitrary operator A acting in a Banach space X

the Fredholm set of A, denoted by ^», is the set of those

complex X for which A- A<^?(X, X). We have by Theorem 1 and 2

Theorem 5. The set ^^ is open and i(A- A) is constant

on each component .

Theorem 6. _If K is a compact operator in X, then

^i^+K
^ ^A ^^ i(A+K-A) = i(A-A) there .

In addition one also has

Theorem 7. On each component of $., the quantities

a( A - A) and P(A - A) are constant except possibly on a discrete

set of points v/here they take on larger values .



won t-

< s
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The proof of Theoren 7 can be made to rest upon

Leiima 3. If A and B are linear operators from X to Y

with A€T(X, Y) and B bounded, then there is an s > such tha,t

a{A-AB) is constant for < j>>| < e.

Proof, Assume first that i(A) = 0. Let x,, ...,x, be

a basis for N(A) and y^,...,y, be a basis for some direct

coiLj.)lement of R(A) in Y. Let x',...,x' be a system of bounded

linear functionals on X such that

x!(x^.) = 5.^ (= Kronecker delta) .

One checks easily that the operator defined by

Ax = A:c + > X .(x)y ,

is continuously invertible. Now x is a solution of (A- AB)x =

if and only if

(A- AB)x = ^ x:(x)y. .

1=1 ^ ^

For some £, > 0, A - 7\B is continuously invertible for |7\| < e,

and hence

= ^~ YZ ^^'(BA-i)"^ YZ ^^•(^)y-i
.1=0 i=l ^ ^

T" x:(x) • T~ ^^(A"^)^x,
i^ ^ 1^ ^

7~~ x:(x)f.(A) ,

i=T ^ ^
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where f^(A) are knoim vector valued functions in X analytic

on |Ai "^ £-!• Thus

<(^) = ir-x'(x)x,'(f,(A))m ^^ 1 .n 1

or

k
"y [5 . -x'(f.(A))]x!(x) =
'-.—T- mi m 1 1
i=l

Conversely, if I-,, •••,Ci, are solutions of

(«) ^t6,.i->^;(fi(^))]5i = o.

then by working back we see that

^ = iz:n^i(^)
i=l ^ ^

is a solution of (A-AB)x = 0. Thus a(A-AB) coincides with

the nuraber of linearly independent solutions of (13)« If

every coefficient in (13) vanishes identically in JA] < e-|^,

there are exactly k linearly independent solutions and

a(A-AB) = k for |a| < £-,. Otherwise there is a minor of

largest order in the determinant of (13) which does not vanish

identically. Since this minor is analytic in A, it can vanish

at most at isolated points. Thus there is an e > such that

this minor is different from in < |a| < e. The number of

independent solutions of (13) is constant on this set and hence
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the same is true for a(A-AB). Thus the leiroria is proved for

i(A) = 0.

Next consider the case i(A) > 0. Let Z be a normed

i
i(A)

I

-diraensional space and let Y-, = Y + Z vjith norm

|y + z| = |y|f^|z| when y € Y, z tZ. Consider A and B operators

from X to Y-, . For these spaces i(A) = and the previous case

applies. But a(A- AB) is not changed when we replace Y hy Y,

.

Thus the lernrna is proved in this case.

If i(A) < 0, let Z be an i( A) -dimensional space and

set X, = X(5 Z. Let A and B be extensions of A and B to X,

vrhich vanish on Z. Then i(A) = and the first case applies.

We then merely observe that a(A - 7\E) = a(A-AB) + i{A) and the

proof is complete.

Proof of Theorem 7« Let O be a component of 1.. Let

A be any point in O vihere a(A-A) has its minimum value in Q.

Then by Le-maa 3 there is a neighborhood about A where a(A- A)

has this constant value. Let A-, be any other point in O. It

suffices to prove that there is a deleted neighborhood about

A-. in v;hich a(A-A) has this minimum value. Connect A, to A

by a smooth curve in O. At each point of this curve there is

a deleted neighborhood in which a(A- A) is constant (Lerimia J).

Since the curve is compact, there is a finite set of such

neighborhoods covering it. Since in each deleted neighborhood

a(A-A) is constant and each one overlaps with at least one

other, they all have the same constant value for a(A- A),

namely the minimura value. Q.E.D.
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In later applications we shall need

Leirjna 4 . If B £ ?( Z, X ) , A is an operator from X to Y

with D(A) dense in X, and AB€ Y(Z,Y), then Ae ^(X,Y) .

Proof. Let B be the operator corresponding to B

described in Ojj . One easily checks that B ^-^{XjZ) where Z

is D(B) under the graph nonn of B. By hjrpothesis AB ^' 'i{Z,Y)

and hence ABB' 6: 'i'(x, Y) . But ABB* = A+AF, vrhere F is bounded

and of finite rank ( cy-!- ) . Hence AF is a compact operator. We

now apply Theorem 1 to conclude that Aey(X, Y),

Lem.-.ia 5. If A'^'T(X, Y), B is an operator from Z to X

v/ith D(B) dense in Z, and AB s Y(Z,Y), then B^ ^(Z,X).

Proof. Pollov7ing the same procedure as in the proof of

Lemi-a 4, vie have A'AB ^ ^^(Z, X), and hence in ^i'(Z,X). Since

A'AB = 3+FB, vjhere F is of finite rank, the operator FB is

compact from. Z to X. Hence B •''!'( Z,X) (Theorem 1) and we can

apply Le;.ima 2 to conclude that B'5T(Z,X).

3. Weyl s Theorei.i and Generalizations

Let T be a self-ad^'oint operator in a Hilbert space H

and let K be a syimvietric, completely continuous operator in

H. Then T+K is also self-adjoint . One might ask how t(T)

and ^(T+K) compare. The ansv.'er v;as given by H. Weyl [ 13] •

Theorem 0. If A is in -^(T) but not in c^(T+K), it m-ust

be an isolated eigenvalue of finite '.lultiplicity.

Proof. We note first that since T is self-adjoint, it





1^

is closed, and hence piT)'^^r^. Thus if Ae.fT(T) but not in

<rr(T+K), it must he in ^rn =
^^+x' ^°^ otherxrise it could not

be in p(T+K). Thus T - p. is a FredhoLn operator for m- in a

neighborhood of 7\. Thus ct(T-|j.) is constant in sorr.e deleted

neighborhood of A ( LeiiUiia 3)« Since all non-real ix are in

p(T), v;e have a(T-ix) = in this deleted neighborhood.

Theorem 9. If a'H-^T) is an isolated ei.genvalue of

finite multiplicity;, there is a sy-xaetric, conpletely contin-

uous operator K in H such that A t" p ( T + K ) •

Proof. We first shovj tha-t ASi^nr Since.

P(T- A) = ci(T- A) < CO, the only thing v;hich must be verified

is that R(T-A) is closed in H, i.e., that the inequality

(1^) llxll < C||(T-A)x||

holds for x€D{T) .oN{T-A) (01). Now A is the only point

of 7(T) in so-.,:e interval [a,b], where a < A < b. If ^E, ^j

is the spectral family for T, then the projection K - E^ maps

into N(T- A). But

i(T-A)xI|2 =y^(-^..A)2d|lE^::r

-00

CX5
.:L

> (b-A)2 TclilE xli^ + (a- A)2 fc\\\E:cf

b -03

= (b-A)2|l(l-E^)x|l2 + (a- A)^||E^x|l^ .
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If X € D(T) n ri(T - A) , ( E, - E )x = and hence ( l4 ) holds,

Nov: let h-,^«..,h,. be a basis for N{T- A) satisfying

(h.,hj = a. .

and set

lOc = ^^ {x,h,)h

Then K is bounded, symmetric and of finite ranlt. Thus

T + K- A is a Fredholm operator. Since cx(T+K-A) = p(T+K-7v) = 0,

Aep(T-hK).

We see from Weyl's theorera that the points of o(T) \vhich

remain invariant under any syi.metric, completely continuous

perturbations are precisely those points which are not isolated

eigenvalues of finite multiplicity. The set of such points is

called the essential spectrum of T and denoted by <^q(T). Thus

Theorems o and 9 can be written as

Theorem 10. If T is self -ad joint and K is syi.raetrlc and

completely continuous, then

cr(T + K) = cr(T) .

From the proofs of Theorems 8 and 9 v/e also have

Corollary 1. iT (T) is the complement C^^ of $^ in the

coJ:iplex plane.

For ;,iany applications it is Important to generalize to

arbitrary closed operators in Banach space and arbitrary



r:o.':,'r./ (T)

e\ ^m:

'9a i:.

.-)'-•
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compact perturbations. It is no longer true that the invariant

points of the spectrum are those which are not isolated eigen-

values of finite multiplicity. Wolf [ l4] defines the essential

spectru^n by means of property expressed in Corollary 1. We

denote the essential spectrum according to this definition by

•y (A).
evr

Definition. For any closed operator A in a Eanach space

We have immediately by Theorem 6

Theorem 11. For any completely continuous operator K,

^ew(A-^K) = cr^^{A) .

We shall also eniploy another definition of essential

spectr\i..u

Definition. For a closed operator A ir a Banach space

X, '^g--^(A) is the largest subset of cTiA) which remains invariant

under arbitrary compact perturbations.

Theorem 12. cr (A) consists of all co'iplex A exceptem * '—
those Afc ^. with i(A- A) = 0.

Proof. If ^^^A ^^^- KA-A) = 0^ then the example given

in the proof of Lemma 5 shows that there is an operator F of

finite rank for v;hich Af:p(A + F). If i(A - X) ^ 0, then for

every compact operator K, i(A+K- A) =1= (Theorem 6) and

hence A£:5{A + K). If A^$», then ^^^^a+k ^^^ again A£^(A+K).





IT

We shall nov; give soiae theorer.is on the invariance of

cr (A) and ^ (A) under different types of perturbations,
ew eiii

Throughout vje shall assuj.ie that A is a closed operator vfith

dense doinain in a Banach space X and B an operator in X with

D(B)SD(A).

Theorem 13 . If B is A-conipact, then

(15) ^W^ + S^ = %J^^

ana

(16) - '^pJA+B) = 3- (A)
C.'-U C-.i

Proof. We prove the theorem by showing that ^^ =
$_^^g

and that i{A-A) = i{A+E-7x) for Afe ^^. If Ae$^, then

Ae6.,^ and the index relationship holds (Theore/a 3). Hence

^.C^„ p. If ^^^A+Rj it follows, in particular, that A + B

is closed. Since A is closed, we have

(17) ilAxll 1C(11::11 + 11(A+B)::|1) ,

v;hich expresses the fact that A is a closed operator defined

everyvjhere on the Banach space D(A-}-B) = D(A) under the graph

norm ||x|| + ||(A+B)x!|. Hence it is bounded on this set. Frou

(17) it follows that B is ( A+ B)-co'.ipact. We now apply Theorem

3 to A+B with perturbation -B. Thus Afe$^. Hence |^_|_g |^,

and the theorem is proved.
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Theorei-a 1^. If Aep(A) n$^^-g and either (A- A)"-B _or

B(A - A)"~ i_s A-conipact then ( 13 ) holcls. If, In addition,

l(A-;-B-A) = 0, then (l6) holds.

Proof. We employ the identities

(18) (A + B-M.) - (A- M-)(A- A)"^(A+B- A) = ( n - A) ( A - A) ""^B

(19) (A+B-ix) - (A+E - A)(A- |a)(A- A)"^ = { 1^ - A)B( A - A)
"'-.

Assiime that (A-A)~~B is A-coi!ipa,ct, We equip D(A) v;ith the

norm |ix|| + |lA:<:|| + ||Bxil. Under it, D(A) becoines a Banach space

X. For if x^^ —* X, Ax^ —^ y, Bx^ —» z, then x£D(A) and

Ax = y since A is closed, while {A+B)x = y+z hecause A+B

is closed. Therefore Bx = z. Now if
I-^- ? ly^+g^ A + B - |j. is a

~
\ -1

Fredliolm operator f roi.i X to X. Moreover, (A - A) B is a

compact operator froa X to X, Thus

-."Q

(20) (A- M-)(A- A)~-(A-1-B- A)

•V

is a Fredholm operator from X to X (Theoreiii 1). Nov;

(A- A)"^(A+B- A)t ^i^(X,X) (LeM^;:a 1). Thus {A- •^) e'Y{X,X)

( Lei.iiaa 4 ) and henc e ( A - tx ) £ 1' ( X, X ) , i.e., ii e $^. Therefor

^A+B"^A* Conversely, if I-l € $^, then the operator (20) is

in 'I'(X,X). Nence the sa.iie is true of A+B-[x, i.e.,

lael^^g. Thus
5y^

=
^A+B*

'^^'^^ proves (15). If KA+B-A) = 0,

v;e have by (l8)
1/ A ^^ ' ' ^

'''^
'

'''^

i(A+E-|x) = i(A- ix) , c^>)-_
y'(- )'-^'^'V)
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and hence (l6) holds.

Theorem 15 . !£. B i£ A -compact and ^ '^^ a
''^

^A+B'
'^!"^^^

(15) holds. If, In addition, i(A-A) = i(A + B-A), then

(16) holds.

Proof, Consider the norm

llUil = 11x11 + llAxll + iBxll + llA^xll + llBAxll

p 2 I''

on D(A~). We claim that D(A ) equip.ed with this norm

becomes a, Banach space X. In fact if x —
=^ x. Ax —

^^^ y,

Bx —^ z, A X —» u, iiAx —* V, then XfeD(A) since A is closed
n n n

and A:z = y, v/hile y feD(A) and Ay = u for the same reason.

Thus xfcDCA"). Since A+B is closed, (A+ B)x = y+ z and hence

Bz = z. The same reasoning gives (A+ B)Ax = u + v, whence

BAx = V. Now suppose M- ^ |i„ . Then the operator

(A + E - A)(A -M.) ^^(X,X) by Lemma 1 and hence is in ^r(X,X).

Hov/ever, when we consider B as an operator from X to X, it

becomes a compact operator. Since

(21) (A+B-A)(A-ia) - ( A +B - 11) ( A- A) = (A-z)B ,

vre see that (
A

-^ B - |i) (A - A) is a Fredholm operator from X

to X (Theorem 1). Thus it is in ^'(X, X) (Lemia 2). Since

(A- A) ^'l'(X, X) v;e can apply Lemjiia k to obtain that

(A + B - M-) '^'•^(X, X). Hence 1^— I^s^.l^* The same reasoning

applied in the opposite direction gives $^ =
^A-I-B'

Moreover

for M- 1 § A we ha,ve by (21), Lerana 1 s-nd Theorem 1



xAi!

'iOn Qldi 1

'. A

V
-*-;-

.q;j a

i-A)

,'-: t
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i(A + B-A) + i(A-!x) = i(A+B-|x) + i(A - A)

Hence

i(A - |x) = i(A+ B- M-) .

Thus i^'^(A + B) = cr^ (A) and the proof is coimlete.

We see from the proof of Theorem 15 that the assumption

2
that B is A -compact can be considerably weakened.

4 . Remarks

Rl. In the Russian literature operators satisfying

properties 1, 5 -5 are called ^-operators, with the \ standing

for Fredholm (cf. ['']). The term Fredholra operator seems

to be reserved for ^-operators having index 0. We have added

assui?iption 2 fcr convenience and do not differentiate on the

basis of index.

R2. Observations 04 and 05 are due to Atkinson [ l]

for bounded operators (cf, also [11,12]).

RJ. Leroma 1 is also dut to Atkinson [ l] for bounded

operators. For unbounded operators it is due to Gohberg [3])

although there seems to be a gap in his proof (cf. A.I"i.S.

translation of [4]). The first part of our proof follows

that of [4], but our proof that R(AB) is closed is different.

Our proof that AB is a closed operator was taken from Kato [8].

Other proofs may be found in [6,8].
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R4 . For the histories of Theorems 1 and 2 see [4],

Our proofs "borrow ideas from Seeley [ 12] . Our proof of

a(A+T) < a(A) appears to be much simpler than any fouv^d

in the literature.

•R5. The idea for Lemma 2 and its proof came from Kato [8]

r6. Theorems 3 and 4 as well as the device employed in

obtaining them from Theorems 1 and 2 are due to Nagy [ 9]

•

R7« Generalizations of Theorems 5-7 can be found in

[8,7]. Cur proof of Theorem 7 is taken directly from [4],

R8. Leranas 4 and 5 are apparently new.

R9. The term essential spectrum originated in [53 vrtiere

it was applied to self-adjoint problems for ordinary differ-

ential equations on a half-line. In this case the essential

spectrum is that part of the spectrum which remains invariant

under changes in the boundary conditions. Browder [2] has

proposed still another definition.

RIO. Theorems 12, Ik, 15 are apparently new. Similar

results may be found in [2, l4].
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